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 A fascination with numbers has shaped the work of  numerous 
artists throughout the centuries. Whereas in earlier times artists focused 
on the mystical symbolism of  individual numbers and their perceived 
capacity to give structure to the complexity of  the universe, modern artists 
have concentrated more on an analysis of  the pictorial language and the 
conceptual dimension of  numbers. Their artistic approaches vary greatly 
in respect to both form and content and often counter the rational thought 
structures of  our age with alternative ways of  thinking and seeing. Num-
bers and numerical systems play an important role in the work of  artists 
such as Hanne Darboven, Charles Demuth, Jasper Johns, Joseph Kossuth, 
Mario Merz, Rune Mields, Michael Müller, On Kawara, Roman Opalka, 
and others [1]. As Karin Maur pointed out in a recent exhibtion catalogue, 
these artists use numbers as signs of  modernity, found objects and random 
subjects. They explore numerical writing and the relationships between 
numbers and languages, and investigate the development from image to 
arithmetical progression, codes of  war, and alogical calculation. They reflect 
upon the role of  numbers in nature, human proportions, and everyday life 
and are fascinated by the meter of  time and metaphysical expression of  
infinity as well as numerical mysticism and the harmonic orders [2].

Since the 1960s, conceptual artists such as Hanne Darboven, On 
Kawara, and others have explored the significance of  numbers as universal 
language and measurement as well as the interrelationships of  numbers 
and their role within a larger ordering system. Whether simply written out 
or used as graphic elements, numbers have served as an artistic medium 
to carry specific messages, to visualize complex systems, and to convey 
metaphysical meanings.

In this essay, we focus on another aspect of  numbers in art, namely, 
the explicit use of  various natural number sequences. In particular, we 
look at the role of  the natural numbers in the work of  Roman Opalka, the 
prime number sequence in the work of  Rune Mields, the Fibonacci number 
sequence often used by Mario Merz, and the U-sequence in the work of  
Michael Müller. Of  interest are not only the wider socio-cultural contexts 
and larger philosophical meanings behind the use of  these sequences by 
contemporary artists, but also the mathematical theory underlying the 
respective sequences, which we will explore in detail.

The mathematics of  the natural numbers and sequences of  natural 
numbers such as the Fibonacci numbers are studied within the mathematical 
field of  number theory [3]. Even though there exist uncountably many 
sequences of  natural numbers, that is, the set of  all sequences cannot be 
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enumerated, those sequences that have mostly been studied in mathematics 
are identified with a number in Neil Sloane’s The online encyclopedia of  integer 
sequences [4].i The numbering of  Sloane’s encyclopedia is used in this essay, 
for example, the sequence of  even numbers is referred to as [A005843].

Roman Opalka : natural numbers and the passage of  time
The Polish artist Roman Opalka (*1931) uses the sequence of  natural 

numbers [A001477]

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, … .

to visualize the passage of  time. In 1965, he began his lifelong task of  
painting numbers in sequence, beginning with 1, then 2, going on, in theory, 
to infinity. Accordingly, the name of  his work is : OPALKA 1965/1 - ∞ 
(illustration 1). It is an ongoing work, a continuous process that will never 
be completed and only end when the artist dies. Traditionally, artists have 
used symbols such as clocks or the human skull to allegorically represent 
the passing of  time and the fleetingness of  life and life’s vanities. Opalka 
uses instead the natural numbers to visualize the passing of  time. Purposely 
stripped of  all manner of  expression, the paintings constitute a record of  
the artist counting from the number one towards infinity. Each work in the 
series, entitled Detail, is identical in size (1.96 x 1.35 m) and is covered with 
numbers painted in white, in level rows, from edge to edge. The first painting 
in the series includes the numbers 1 to 35328; the second panel then begins 
with 35329.ii The artist brightens the originally black canvas by 1% from 
painting to painting, so that the second canvas is 1% brighter than the first, 
the third canvas is 1% brighter than the second and 1.99% brighter than 
the first, the fourth canvas is 2.97% brighter than the first, and so on. The 
« last » canvas in the series will consist of  white numerals on an almost white 
background, again emphasizing the continuity of  his work and the passage 
of  time. In the tradition of  Kazimir Malevich’s White on White painting of  
1918, Opalka is continually approaching infinity with his series of  numbers 
and ever-lighter canvases, but will never reach it. The paintings, an ongoing 
numerical record of  the passage of  time, are accompanied by a recording of  
the artist counting aloud in his native language and by photographs of  the 
artist taken at regular intervals as he works on the canvases. Having spent 
more than half  of  his life on this single work, Opalka has meanwhile passed 
the number 5000000 ; there are now more than 200 panels in the series.

i  In fact, there are as many sequences of  natural numbers as there are numbers on the number line.
iiPutting Opalka’s first detail under scrutiny, one can find some mistakes in his attempt to write out all natural numbers in 
increasing order. For example, the numbers 34009, 33010, 33011, 34015, 34016 are listed successively.
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Rune Mields : chaos and order in the prime numbers
Prime numbers are positive integers larger than 1 that are only divisible 

by 1 and by themselves. Numbers which are not prime and which therefore 
have nontrivial divisors are called composite numbers. The sequence of  
primes starts with

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, … .

The Greek philosopher and mathematician Euclid (circa 325 – 265 B. C.) 
showed that the sequence of  primes is infinite, just like the sequence of  
natural numbers [5]. In fact, if  there were only finitely many prime num-
bers, then every natural number would be divisible by at least one of  those 
finitely many prime numbers. Therefore, the number computed by adding 1 
to the product of  all these finitely many prime numbers will be divisible by 
at least one of  these prime numbers. Since the product itself  is also divisible 
by that same prime number, the difference, namely 1, must be divisible 
by that prime number as well. This is obviously nonsense and, therefore, 
the assumption that there are only finitely many primes must have been 
incorrect in the first place. Hence, there are infinitely many prime numbers.

This classical proof  by contradiction helps neither to find infinitely 
many prime numbers, nor to determine whether a given number is prime. 
Indeed, it is simple to show that 229 is prime, in fact, it is the 50th prime, but a 
significant effort is needed to check whether a number with several hundred 
or even several thousand digits is prime. Even though prime numbers with 
thousands of  digits are not used for counting – some scientists estimate that 
an integer with 130 digits should be sufficient to represent the number of  
electrons in the observable universe – large primes are in fact useful and play 
a commercial role in the encryption of  information [6].

To find fast algorithms which determine whether a large number is 
prime remains an active research topic in number theory. A recent and 
major theoretical achievement in this direction was the justification that the 
amount of  computations needed to see whether an N-digit number is prime 
does not grow exponentially with N, but can be bounded by C· N12 (C is a 
large constant that does not depend on the number of  digits N) [7].

Today, hundreds of  volunteers donate computer resources to the Great 
Internet Mersenne Prime Search (GIMPS) project which coordinates the hunt for 
larger and larger primes [8]. The GIMPS project focuses on the discovery of  
the so-called Mersenne primes, that is, of  primes of  the form 2n-1, where n 
is prime. Their effort delivers a new largest known prime approximately twice 
a year. The current record is 232582657-1. It was discovered on September 6th, 
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2006, and its 9’808’358 digits barely missed the 10 million digits necessary to 
collect the prize of  $ 100’000 for cooperative computing from the Electronic 
Frontier Foundation [9]. The inclusion of  this currently largest known prime, 
digit by digit, would require approximately an extra 3’800 pages of  this issue 
of  Arkhaï. This essay alone would consequently be almost 40 centimeters 
thick.

The quest to find larger and larger prime numbers has occupied 
mathematicians and artists alike. The Cologne-based artist Rune Mields 
(*1935) has concentrated in her work on exploring the largest known prime 
numbers for decades. In the 1970s, she created a series of  works visualizing 
the primes between 1 and 120000 in the Chinese-Japanese Sanju system. 
When, in 1980, the then largest prime number 2444497-1, a number with 13’396 
digits, was discovered, she used a computer printout of  this prime number to 
identify the digits 0 and 9 within this prime, as well as their frequency. After 
a new large prime number was discovered by the German mathematician 
Wilfried Keller in 1984, Mields used a printout of  this prime for her work 
Die Söhne der Mathematik (The Sons of  Mathematics, 1988) [10].

More generally, Mields focuses on the contrast between chaos and 
order by exploring old and new ordering systems in their historical and 
cultural continuity. She has worked with 96 known number systems and 
sequences, among them stick counting, the Fibonacci series, the Sanju prime 
numbers, the magical square, and the 6 x 12 number-picture system. In her 
study of  prime numbers, Mields has also focused on visualizing repunit 
primes – primes whose digital presentation is a string of  1s, the only known 
repunits have 2 digits (11), 13 digits (1111111111111111111), 19 digits, 317 
digits and 1’031 digits – and the so-called twin primes 3,5 ; 5,7 ; 11,13 ; 17,19 ; 
29,31 ; … Her interest in twin primes touches upon a famous open problem 
in number theory, namely the Twin Prime Conjecture which states that there are 
infinitely many prime numbers p with the property that p+2 is also a prime number [11]. 
This problem was already mentioned by Euclid in his Elements. The largest 
known example for twin primes is the pair

100314512544015· 2171960-1, 100314512544015· 2171960+1,

each of  which has 51’780 digits. Mields explores these mathematical 
questions from an artist’s point of  view and accompanies mathematicians as 
they attempt to proceed into uncharted territory of  number theory.

Mields also represents prime numbers in various visual forms in 
an effort to reveal structure and provide insight. In her series Das Sieb 
des Eratosthenes III (The Sieve of  Eratosthenes III, 1977, illustration 2), 
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she applies a famous procedure, named after the Alexandrian scholar 
Eratosthenes of  the 3rd century B. C. and still taught in schools today, 
for finding all prime numbers smaller than a given large number. She 
summarizes this procedure as follows [12] :

1. 2 is a prime number so put a circle round the 2 on your square.
2. Now cross out all the other multiples of  2. If  you can spot a pattern you 

will be able to do this very quickly.
3. Now put a circle round the next number after 2 that isn’t crossed out, 

that is 3.
4. Now cross out all the other multiples of  3. You will find that some of  

them are crossed out already. Once again, look for a pattern.
5. Now move on to the 5. Circle it and cross out all its other multiples. Keep 

going… all the circled numbers will be prime ! !

While the hunt for bigger and bigger prime numbers necessitates the 
development of  fast algorithms and fast computers, there are many open 
questions analogous to the Twin Prime Conjecture waiting for a « pencil on 
paper » proof. The Riemann Hypothesis [13], likely the most sought after 
question in mathematics since Andrew Wiles was able to confirm Fermat’s 
Last Theorem in 1995, is one of  seven open problems in mathematics whose 
corroboration carries a prize of  $1’000’000 from the Clay Mathematics 
Institute [14]. The Riemann Hypothesis discusses the distribution of  primes 
among integers. As was shown above, there are infinitely many prime 
numbers. Still, one can ask what the proportion of  prime numbers to 
composite numbers is, or, loosely speaking, what is the probability that a 
randomly chosen natural number is prime. The Riemann Hypothesis states 
a more precise estimate of  the proportion of  primes to composites than 
the long established Prime Number Theorem, which asserts that there are 
approximately n/log(n) prime numbers smaller than any given number n. 
This implies that large numbers are less likely to be prime numbers than 
small numbers, something which becomes intuitively clear through, for 
example, The Sieve of  Eratosthenes. The Prime Number Theorem’s accuracy is 
quite impressive. For example, n/log(n) estimates 21 prime numbers smaller 
than 100, 144 smaller than 1000, 1’085 smaller than 10000, and 8’685 smaller 
than 100000, while the precise numbers are 25 primes smaller than 100, 
168 smaller than 1000, 1’229 smaller than 10000, and 9’592 smaller than 
100000.

The equally famous Goldbach Conjecture from 1742 states that every 
even integer larger than two can be written as the sum of  two (not necessarily distinct) 
primes [15]. It is worth noting that while the definition of  prime numbers 



56 exploring infinity : number sequences in modern art 

is based on multiplication, both – the Twin Prime Conjecture and the Goldbach 
conjecture – are stated in terms of  the additive structure of  integers. This leads 
to the question of  whether the interplay of  multiplication and addition is 
the reason that these conjectures, though simple to state, have withstood 
centuries of  attacks by the most brilliant mathematicians.

The most recent landmark achievement in the theory of  prime numbers 
is due to Ben Green and Terence Tao (2004) and concerns the additive 
structure of  prime numbers as well. They proved a classical conjecture 
that states that the sequence of  prime numbers contains arbitrarily long 
arithmetic progressions [16]. That is, for any large number, say 100, there 
exists a sequence of  100 prime numbers with the property that the difference 
of  two successive prime numbers is always the same. The proof  of  Green 
and Tao is certainly not constructive, that is, it does not provide a method 
that locates arithmetic progressions in the primes ; the longest arithmetic 
progression known today has only 23 terms and starts with

56211383760397, 100758121856257, 145304859952117, ... .

It was found by Markus Frind, Paul Jobling and Paul Underwood in 2004 [17]. 
The result of  Green and Tao described above is only one of  a number of  
remarkable results which were achieved by collaborations involving Terence 
Tao. For this reason, Terence Tao, 31 years old, was awarded a Fields Medal 
last year – equivalent to a Nobel Prize for mathematicians.

Mario Merz : Fibonacci numbers as « chiffre for life and art »
Another number sequence that has fascinated scholars and artists alike 

is the sequence of  Fibonacci numbers [A000045], named after the Italian 
mathematician Leonardo of  Pisa, also known as Fibonacci. To define them, 
one has to fix the numbers 0 and 1 as the first Fibonacci numbers in the 
sequence and declare that, however many Fibonacci numbers have been 
constructed, the next Fibonacci number is the sum of  the two previously 
constructed ones, in this case the sum of  0 and 1, that is 1. The next 
Fibonacci number is again the sum of  the two previous ones, now 1 and 1 ; 
their sum equals 2. This procedure defines the obviously infinite Fibonacci 
sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ... .

At first glance, the Fibonacci sequence might appear as mystique as the 
sequence of  primes. The Fibonacci sequence is recursively defined as were 
the prime numbers, so to determine the 50th Fibonacci number by the rule 
given above, one needs to know the 48th and the 49th Fibonacci numbers. To 
compute these, the 46th and 47th Fibonacci numbers are required, and so on. 
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But contrary to the prime numbers, a simple mathematical analysis shows 
that the recursive procedure can be circumvented and Fibonacci numbers 
can be computed directly. In other words, the nth Fibonacci number Fn is 
given by Binet’s formula

�

�
�
�

�� �

�

�

�
�

�

�
�

�

�
�� �

�

�

�
�

�

�
�

�

�

�

�� �

�

�

� �
� ��

�

�

�� �

�

�

�� �

�

�

�
�

�

�
�

�

�

�� �

�

�

�
�

�

�
�

�

�

�
���

�
�

�

�� �

�

�

�
�

�

�
�

���

�� �

�

�

�
�

�

�
�

�
�
�� �

�
�

This implies that the computation of  the 50th Fibonacci number 
does not actually require knowledge of  the 49th, the 48th, the 47th, or the 
1st Fibonacci number. For instance, when n=50, the formula above gives 
12586269025, which is exactly the 50th Fibonacci number.

Above, it was shown that the sequence of  prime numbers not only 
possesses infinitely many terms, but has a rich structure which, even 
though it has been studied for two thousand years, is still far from being 
fully understood. Its structure is so rich that simple statements such as the 
existence of  infinitely many twin primes are still awaiting proof. At the same 
time, considerable computer power is used nowadays to push the boundary 
of  known prime numbers further and further. In contrast, Fibonacci 
numbers have a very simple, well-understood structure as shown by the 
formula above. Similar questions to those asked about the prime numbers 
are easily answered. For example, not every even number is the sum of  
two Fibonacci numbers (12 is not), and there are not infinitely many twin 
Fibonacci numbers. In fact, the authors of  this paper are not aware of  any 
catchy open conjecture involving the Fibonacci numbers ; furthermore, the 
formula above allows one to easily find a Fibonacci number with 10’000’000, 
or even more digits.

From a mathematical point of  view, the infiniteness of  Fibonacci 
numbers has been resolved and its simplicity is exposed. On the other 
hand, the relation of  the Fibonacci sequence to the golden ratio and their 
relevance for growth in nature still plays and is expected to continue to play 
a rich role in the visual arts.

The Italian Arte Povera artist Mario Merz (*1925) came across the 
Fibonacci number sequence in 1967 and made it the basis of  his artistic 
work. He was particularly attracted by the fact that Fibonacci sequences 
appear in biological settings and can be found in the growth patterns of  
leaves, snail shells, pine cones, sundry fruits and vegetables, and the skins 
of  reptiles [18]. The numbers and arrangements of  petals, seeds, and plants 
that are formed in spirals such as pinecones, pineapples, and sunflowers also 
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adhere to the Fibonacci series. Like the Greek philosopher and geometer 
Pythagoras (circa 570 – 490 B. C.) who saw in numbers the ultimate reality, 
Merz perceived the Fibonacci numbers as something alive, dynamic and 
growing, a « chiffre for life and art ».

In 1968, Merz began to work on his famous igloos, revealing the 
prehistoric and tribal features hidden within the present time and space. 
These dome-shaped temporary constructions, among them Pythagoras’ 
Haus of  1994 (illustration 3), express the artist’s preoccupation with the 
fundamentals of  human existence : shelter, food, and the human relationship 
to nature. Each of  these archetypal dwellings is built specifically for the 
exhibition in which it is shown, the materials – metal tubing, glass, sand bags, 
branches, or stone – often being indigenous to the location. The organic 
aesthetics of  his installations are simultaneously contrasted and enhanced 
by the use of  neon numbers that refer to the Fibonacci series. Drawing 
upon this exponentially growing mathematical sequence, Merz emphasizes 
the growth patterns of  natural life in his constructions. His usage of  the 
Fibonacci series as an organizing principle of  his works not only suggests 
an instance of  time as subject matter or a meditation on infinity, but also 
intrinsically links natural patterns, human behavior, and artistic creation.

The golden ratio was considered by the Greeks to be the most 
aesthetically pleasing visual proportion and has dominated discourse on art 
from antiquity to modern times. Euclid described the golden ratio in his 
Elements, a collection of  thirteen books on geometry and number theory, as 
follows : « A straight line is said to have been cut in extreme and mean ratio when, as the 
whole line is to the greater segment, so is the greater to the less » [19]. The division of  
a line AB at any point M on the line leads to the two ratios of  lengths AB : 
AM and AM : MB. But there is only one point M for which the ratio is equal, 
and the ratio is then �
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 which is often called Φ (capital phi). Its reciprocal

is 
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 (lower case phi). Both of  these are variously called the golden 
number or golden ratio, golden section, golden mean, or the divine 
proportion.

The golden ratio �
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 clearly occurs also in Binet’s formula for the 

Fibonacci sequence. Since 
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 approaches 0 with increasing n, Binet’s 

formula is actually dominated by the term 
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. This explains the 
exponential growth of  the Fibonacci sequence, but also implies that the 
ratio of  successive Fibonacci numbers approaches the golden ratio, that is,
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The golden ratio was believed to evoke emotional or aesthetic feelings 
and to be particularly pleasing to the human eye [20]. It has been identified 
in the construction of  the great pyramids in Egypt, the Pyramid of  the Sun 
at Teotihuacán in Mexico, and in Greek temples such as the Parthenon in 
Athens [21]. Pythagoras identified the golden ratio in the proportions of  the 
human body ; his revelations on the proportions of  the human figure had a 
tremendous impact on Greek and Renaissance art and architecture.

In the early 16th century, the golden ratio was rediscovered by Luca 
Pacioli (1445 – 1517). In his treatise Divina proportione (On the Divine 
Proportion, 1509), he attributes to it five divine attributes. In the first four, 
he stated that it is unique like God, is a single proportion in three terms 
as the trinity is one substance in three persons, cannot be expressed by a 
rational number as god cannot be described in words, and is, like God, always 
similar to itself. In the fifth, Pacioli compares the « divine proportion » to the 
Platonic quintessence : « God confers being to the celestial virtue, called by the other 
name ‘fifth essence’, and through that one to the other four simple bodies, that is, to the 
four earthly elements... and so through these to every other thing in nature. Thus this our 
proportion is the formal being (according to Timaeus) of  heaven, attributing to it the figure 
of  the solid called Duodecahedron [Dodecahedron], otherwise known as the solid of  
twelve pentagons » [22]. Pacioli’s treatise greatly influenced Renaissance artists 
such as Leonardo da Vinci, Michelangelo, Raphael, and Albrecht Dürer who 
used the golden ratio in their works. In modern times, the golden ratio can 
be found in the works of  Georges Seurat and Paul Signac as well as Piet 
Mondrian and the architect Le Corbusier.

Michael Müller : the mystique of  Ulam numbers
Like the Fibonacci number sequence, any Ulam number sequence is 

determined by its first two terms [23]. The most famous choice starts with 
1 and 2 ; the resulting Ulam sequence is then called (1,2)-Ulam sequence 
or, simply, U-sequence [A002858]. The definition of  the remaining terms 
in an Ulam sequence is again based on a recursive rule. Namely, the next 
term of  any Ulam sequence is given by the next smallest number that can be 
written in exactly one way as the sum of  two previously determined Ulam 
numbers. Hence, 3=1+2 is an U-number, and so is 4=1+3. The number 
5=1+4=2+3 is not a U-number, but 6=2+4 is again a U-number. The U-
number sequence therefore begins with



60 exploring infinity : number sequences in modern art 

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, … .

Like the Fibonacci sequence, the U-numbers are defined on the basis of  
addition only, so it could be expected that U-numbers are not more complex 
than the Fibonacci numbers. This is not the case as is described below.

The first question considered here is whether there exist infinitely 
many U-numbers. To confirm this, the opposite is assumed, namely that 
there are only finitely many U-numbers. In that case, there would be two 
largest U-numbers. But their sum is a number that could only be written in 
one particular way as the sum of  two distinct U-numbers, that is, as the sum 
of  these two largest ones. This clearly gives rise to another, larger U-number 
and thereby contradicts the assumption that made it possible to pick the 
largest two U-numbers earlier. The assumption that there are only finitely 
many U-numbers must have been wrong, and, therefore, there are infinitely 
many U-numbers.

The German artist Michael Müller (*1970) has been fascinated by the 
structure of  Ulam numbers since the early 1990s. Müller’s interest in the 
works of  the Polish mathematician Stanislaw Ulam (1909 – 1984) originated 
in Ulam’s contributions to war technology as a member of  the Manhattan 
Project at Los Alamos, New Mexico. There, Ulam invented nuclear pulse 
propulsion and, in collaboration with the Hungarian physicist C. J. Everett, 
he improved Edward Teller’s early model of  the hydrogen bomb. Ulam 
was furthermore an early proponent of  using computers to perform 
mathematical experiments. Looking at Ulam’s many contributions to 20th-
century science and technology, Müller also came across one of  Ulam’s 
contributions to mathematics, the so-called Ulam numbers [24]. Despite his 
growing interest in the U-sequence, Müller did not become aware of  the 
number theory literature spurred by the creation of  the Ulam sequences.

Fascinated by the U-numbers, with their simple definition yet complex 
structure, he employed software engineers to implement an algorithm for 
the computation of  U-numbers on powerful computers. He attempted 
to break down the complexity of  the Ulam numbers and to increase his 
understanding of  their structure and density within the natural numbers by 
indulging himself  in an overwhelming quantity of  computed U-numbers. 
Like mathematicians before him, he failed to decipher the sequence of  U-
numbers.

For example, it is known that there are infinitely many U-numbers, 
but, as with prime numbers, the obvious question about the density of  U-
numbers relative to the natural numbers remains to be addressed. In fact, 
Stanislaw Ulam conjectured that as with prime numbers, the probability that 
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a random choice of  an integer would result in a U-number gets smaller 
as the chosen number gets larger. This conjecture has not been proven 
or disproven, but computations of  all U-numbers smaller than 4· 107, 
which were carried out by Jud McCranie, seem to imply the opposite : on 
average, there are apparently 2 U-numbers in every segment of  27 natural 
numbers [25].

The (1,2)-Ulam sequence described above is still hardly understood. 
Surprisingly, the complications suddenly vanish when the starting values are 
changed. For example, the (2,7)-Ulam sequence [A003668] is given by

2, 7, 9, 11,13, 15, 16, 17,
19, 21, 25, 29, 33, 37, 39, 45, 47, 53, 61, 69, 71, 73, 75, 85, 89, 101, 
103, 117, 133, 135, 137, 139, 141, 143, 145, 147, 151, 155, 159, 163, 
165, 171, 173, 179, …

and the differences of  successive terms are

5, 2, 2, 2, 2, 1, 1,
2, 2, 4, 4, 4, 4, 2, 6, 2, 6, 8, 8, 2, 2, 2, 10, 4, 12, 2, 14, 16, 2, 2, 2, 2, 2,
2, 2, 4, 4, 4, 4, 2, 6, 2, 6, 8, 8, 2, 2, 2, 10, 4, 12, 2, 14, 16, 2, 2, 2, 2, 2,
… .

Aside from its first seven terms, the resulting sequence of  differences 
is apparently periodic and repeats itself  every 26 numbers [26, 27], a 
phenomenon that is expressed in mathematical terms by saying that the 
(2,7)-Ulam sequence is regular [27]. Consequently, the density of  regular 
Ulam sequences is easily calculated. The list above shows that there are 33 
(2,7)-Ulam numbers smaller than 142, and the regularity implies that there 
are 59 smaller than 266, 85 smaller than 390, and so on. Therefore, the 
density is 33/142, 59/266, 85/390, 111/515, 137/639,… and the fractions 
approach the density 13/62. Therefore, about 21% of  the integers are 
elements of  the (2,7)-Ulam sequence. The regularity of  this Ulam sequence 
also implies that there are no (2,7)-Ulam twins aside of  15 and 16, and 16 
and 17. Arbitrarily long arithmetic progressions exist as well, for example

19, 145, 271, 397, 523, 649, 775, 901, 1027, 1153, 1279, 1405, 1531, 1657

is an arithmetic progression of  length 15 that is contained in the (2,7)-Ulam 
sequence and that can be continued to obtain arithmetic progressions of  
any length.

The (2,7)-Ulam sequence has only 2 even terms ; in fact, it has been 
shown that any Ulam sequence with finitely many even terms is regular [28]. 
But even this rather general theorem does not help to decipher the (1,2)-
Ulam sequence. In fact, among the first 200 elements of  the (1,2)-Ulam 
sequence there are 105 even terms.
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In his attempts to understand the density of  the (1,2)-Ulam sequence, 
Müller compiled all numbers that are U-numbers and those that are not 
into separate books, realizing his Ulam Rot/Grün (Ulam Red/Green, 2005, 
illustration 4). Thirteen DIN A4 format books list the numbers from 1 to 
226555 in one column per page and one number per line. Whereas a single 
green volume includes all U-numbers, the twelve red volumes include all 
other natural numbers ; the books represent the inseparability of  the natural 
numbers.

As with the question on the existence of  infinitely many twin primes 
that mathematicians and artists such as Rune Mields have explored, Müller 
realized that the only successive numbers in his long list of  U-numbers are 
1,2 ; 2,3 ; 3,4 ; and 47,48. He therefore conjectured that 47 and 48 would be 
the largest twin pair of  U-numbers. In fact, he devoted two art works to 
this phenomenon and announced a prize to those proving or disproving his 
assertion. In his 47 48 in 2005 (illustration 5), Müller embossed the numbers 
47 and 48 into pink blotting paper and mounted them onto grey cardboard. 
The subheadings of  the two pieces read accordingly ; they formulate his 
assumption that 47 and 48 is the last pair of  directly sequential Ulam 
numbers. Without knowing, the artist had restated a conjecture that was first 
made by Bernardo Recaman in 1973 and which is therefore almost as old as 
the U-numbers themselves [29]. The problem is included in the book Open 
Problems in Number Theory [30]. Its renowned author, Richard K. Guy, might 
have slightly exaggerated the difficulty of  solving this problem by stating 
that he believes that this problem will « never » be solved [31].

Müller realized that lining up U-numbers in increasing order would 
not help him to further understand them, so he decided to develop new 
visualization methods that would help to decipher these sequences. His first 
method was an adaptation of  one of  Ulam’s best known contributions to 
number theory, namely the Ulam spiral, which Ulam used to obtain new 
insights into the sequence of  prime numbers [32]. As with U-numbers, 
the line up of  primes in increasing order appears as if  one has just chosen 
numbers, that is, odd numbers, at random. The Ulam spiral is obtained 
by numbering the squares on a sheet of  graph paper, starting from the 
center and proceeding in counter-clockwise spirals. The boxes containing 
prime numbers are then marked and, surprisingly, the prime numbers 
appear not to be distributed on the graph paper at random, but pile up on 
specific diagonals. Müller borrowed this procedure, but marked U-numbers 
rather than prime numbers on his spiral of  natural numbers. As Müller 
demonstrates in his 2006 Ulam Spirale (Ulam Spiral, illustration 6), the 
resulting picture appears to contain points at random. While noticing the 
randomness, Müller also saw the Christian cross appear in the middle of  his 
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page, adding, in his words « infiniteness of  divinity » to the « infiniteness of  
the unordered » [33].

Müller’s 2005 work Ulam Ringe (Ulam Rings, illustration 7) presents 
another mathematically intriguing visualization of  the Ulam number 
sequence. The first circles that are drawn have diameters 1 and 2, 
corresponding to the first U-numbers. They touch at one point. The next 
U-number is 3, so a circle of  diameter 3 is required. Since the sum, which 
determines the 3, involves the U-numbers 1 and 2, one chooses a circle of  
diameter 3, which touches both previously drawn circles again at one point 
only. The following U-number is 4 and a circle of  diameter 4, touching the 
circles with diameter 1 and 3 at one point each, is drawn. The next circle has 
diameter 6 and likewise touches circles of  diameter 2 and 4, and so on. It is 
easy to see that there are at most two circles of  a given diameter touching 
two previously drawn circles. However, Müller’s experiment leads to the 
question, whether the structure of  the U-numbers guarantees that circles 
corresponding to U-numbers whose sum gives a new U-number are not too 
far apart to be touched by a single circle of  the prescribed diameter. This 
is necessary for the process of  drawing circles in the described way to be 
continued indefinitely.

Müller’s set of  pencil drawings Ulam Gebirgszug (Ulam Mountain Range, 
2005, illustration 8) represents a possibility to visualize the Ulam sequence : 
the sequence from 260 to 502 merges into a spatial diagram. The shifted 
sheets of  paper evoke the flow of  a river that would culminate, according 
to the principle of  the sequence, in the number 1 to the right and widen 
towards infinity on the left [34].

As for other artists interested in number sequences, Müller’s 
fascination with Ulam numbers is more metaphysical than mathematical. 
His art represents his own approach to the study of  the Ulam numbers. 
He did not borrow results from number theory and it is therefore quite 
remarkable that his search has led him to the same questions as those of  
the number theorists. For Müller, numbers not only serve as a tool to 
create structure, but also provide a means to explore infinity. Responding 
to the human desire to give order to cosmic chaos, he concentrates in his 
work on expressing infinity in finite space. In his quest to visualize infinity 
through art, Müller explores the three realms of  the human search for 
infinity : science, space, and religion. He is interested in mathematics in 
order to draw conclusions about infinity ; his works on the U-sequence use 
the mathematical systems of  a specific number series to visualize infinite 
processes from an artistic-scientific viewpoint. Another problem that has 
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informed Müller’s art is the question how to overcome the finiteness of  real 
space, that is, how to deal with the discrepancy between the finiteness of  
the space of  human perception and the presumed infiniteness of  universal, 
cosmic space. His works on star constellations focus on the exploration 
of  cosmic space in astronomy and philosophy. Religious thought is a third 
aspect, which is only indirectly referred to by Müller in his translations of  
religious texts into other languages. Thus, Müller’s works are results of  
human imagination at the intersection of  art and science, philosophy and 
religion ; his visual expressions of  the infiniteness of  number series also 
stand for the infiniteness of  the universe and the infiniteness of  God.

The fascination with number sequences is shared by Roman Opalka, 
Rune Mields, Mario Merz, and Michael Müller. Each of  these artists chose 
a specific number sequence and used it as a means to explore and express 
a particular theme going beyond usual human comprehension. Opalka 
uses natural numbers to capture the continuous and endless passage of  
time. Mields explores chaos and order by means of  the complex and only 
partially understood system of  prime numbers. Merz focuses on growth in 
nature, which historically has been associated with the Fibonacci sequence, 
and Müller attempts to decipher the U-sequence in his quest to grasp the 
infinity of  mathematics, space, and divinity. The interest in mathematics per 
se distinguishes Mields and Müller from Opalka and Merz. Both, Mields 
and Müller, have consulted with mathematicians and their art continues to 
evolve as they are drawn deeper and deeper into the uncharted territory of  
number theory.
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